
County-level and point-level analysis of the
relationship between political inclination and
frequency of electric-vehicle charging stations

in New England

by Anonymous

Abstract

Electric-vehicle charging stations play a key role in the adoption of electric vehi-
cles. Therefore, it's important to understand how different factors are related to
the frequency of charging stations in a region. Existing work has shown that U.S.
states with the Republican candidate winning most votes for both the 2016 and
2020 elections tend to have fewer charging stations. Motivated by this study, we
seek to answer whether this discovered relationship between political inclination and
frequency of charging stations holds at two finer spatial scales, the county level and
the point level, in the New England region of the United States. For the county-level
analysis, we explored linear regression and four spatial regression models. For the
point-level analysis, we explored the non-homogeneous Poisson process (NHPP). In
both analyses, we used three county-level explanatory covariates constructed from the
2021 American Community Survey data, and one county-level explanatory covariate
constructed from the 2020 U.S. presidential election vote counts for quantifying polit-
ical inclination. The two final models, the linear regression model and the NHPP,
both predict that counties with more Democratic votes than Republican votes tend
to have more charging stations but disagree on the direction or discernibility of other
explanatory covariates considered.

Keywords: clean energy, U.S. politics, spatial statistics

1



1 Introduction

As the world grapples with the challenges of global warming, transferring from tradi-
tional forms of transportation to more sustainable ones is becoming increasingly important.
Among many forms of sustainable transportation, electric vehicles have gained significant
traction over the last decade and can now be commonly spotted on roads. Compared to
traditional vehicles that directly operate on fossil fuels, electric vehicles currently provide a
similar amount of greenhouse gas emissions after taking into account their manufactoring
process and the emissions due to electricity generation � this amount is projected to greatly
reduce as electricity are generated from cleaner sources [13]. However, the adoption of
electric vehicles heavily rely on an accessible network of charging stations. While many
factors have been shown to affect/correlate with the frequency of charging stations in a
region, the relationship between political inclination and their frequency remains under-
explored.

To the best of our knowledge, [9] is the most relevant existing study on the relationship
between political inclination and the frequency of charging stations. This study showed
that, after accounting for median household income and highway density, U.S. states with
the Republican candidate winning most votes for both the 2016 and 2020 elections tend
to have fewer charging stations (page 11 of [9]). This result is perhaps not suprisingly:
Democrats have been shown to have higher willingness for adopting electric vehicles [18]
and a 2015-2016 survey of vehicle owners across U.S. shows that electric vehicles were
indeed most popular among Democrats [4]. We also found studies that looked into the
relationship between other factors and the frequency of charging stations. For instance,
there tends to be a lower number/density of public charging stations in low-income, Black
or Latino communities in New York City [10] and the state of California [8]. There are also
studies that look at optimizing the distribution of charging stations to maximize certain
utility metrics [6].

In our study, we seek to answer whether the relationship between political inclination and
the frequency of charging stations discovered by [9] not only holds on the state level but
also on two finer spatial scales, the county level and the point level. Our motivation is that
changing the unit of aggregation can sometimes affect the outcome of inference (counties
are much smaller than states), and modeling the variation of charging stations on a finer
scale for a region of interest is by itself an interesting case study. Unlike [9], we focus on the
New England region of the United States instead of the entire United States, although the
same analysis can be easily extended. Methodologically, we follow [9] and use regression-
style models to explain variations in the frequency of charging stations using a linear
combination of explanatory covariates, including one that measures political inclination on
a continuous scale rather than the binary scale used in [9] to allow for more fine-grained
interpretations. We approached the county-level analysis with linear and spatial regression
models and the point-level analysis with the non-homogenous Poisson process. To answer
our research question, we interpreted the fitted coefficients of each model in the context of
our data.

This paper is organized as follows. Section 2 outlines the data sources and the preprocessing
steps for transforming the raw data into data that are ready for subsequent analyses.
Section 3 (Methods) describes the exploratory and formal methods we used to analyze areal
and point-level data. The results from these methods are then reported and interpreted in
Section 4 (Results). Finally, in Section 5 (Discussion), we summarize main findings and
discuss caveats and ideas for future work.
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(a) (b)

Figure 1. (a) Locations (red points) of all in-operation public electric-vehicle charging stations
in 48 U.S. states (not showing Hawaii and Alaska) by May 2023. We see more stations along the
east and west coasts and in/near major cities. (b) Locations of charging stations subsetted to
New England. Black polygons represent counties. We see a major cluster of charging stations near
Boston.

2 Data
2.1 Data sources
To conduct the study, we relied on three sources of data. Our first source of data is
an update-to-date (by April 10, 2023) point-level dataset containing locations of all in-
operation public electric-vehicle charging stations in the United States and Canada (Figure
1a) downloaded from the United States Department of Energy's Alternative Fuels Data
Center [15]. These locations are collected by the National Renewable Energy Laboratory
from a variety of sources including trade media, Clean Cities coalitions, online Submit New
Station forms, equipment manufacturers, and so on [14]. Since we are only interested in the
frequency of charging stations within New England, we subsetted this point-level dataset
to only charging stations within New England1 (Figure 1b).

Our second source of data is the American Community Survey (ACS) data. The ACS is a
�large demographic survey collected using mailed questionaires, telephone interviews, and
from [U.S.] Census Bureau representatives to about 3.5 million household addresses annu-
ally� [17] and �covers U.S. residents in all 3141 counties in the 50 [U.S.] states, the District
of Columbia and all 78 municipalities in Puerto Rico� [16]. Using the tidycensus package
in R [19], we accessed the 2021 ACS database and downloaded the following county-level
census variables for each county in New England: the size of its total population, sizes of its
populations of different races (including White, Black, American Indian and Alaska Native,
Asian, Native Hawaiian and other Pacific Islander, and others), sizes of its populations
with different levels of higher education (including bachelor's degree, master's degree,
doctorate degree and professional-school degree), the size of its unemployed population,
and its median household income (in US dollars).

Our third and final source of data is the county-level vote counts for the 2020 U.S. pres-
idential election of all counties in the United States [3]. Specifically, for each county, this
dataset records separate vote counts for the Democratic party, the Republican party, the

1. We excluded two counties in New England throughout our analysis: Dukes County and Nantucket County of
Massachusetts. These two counties are islands that are not connected to the mainland via bridges and are considered
as tourist destinations, so they could exhibit different spatial dynamics from the rest of New England. For the
remainder of this paper, �New England� refers to the actual New England region without these two counties.
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Figure 2. Correlations between pairs of candidate explanatory covariates.

Green party, the Libertarian party, and other parties. We also subsetted this dataset to
only counties in New England.

2.2 Construction of new census-level covariates

Using raw census-level covariates and the point-level data mentioned in Section 2.1, we
constructed new census-level covariates that are more informative. To calculate the number
of charging stations per person of a county, which we refer to as the rate of charging
stations, we divided the county's aggregated number of charging stations by the size2 of
its total population. To calculate the percent unemployed of a county, we divided the size
of its unemployed population by the size of its total population. To calculate the percent
with Bachelor's degree or higher of a county, we added the sizes of its populations with
bachelor's degree, master's degree, doctorate degree and professional-school degree and
divided this sum by the size of its total population. To calculate the Herfindahl�Hirschman
index (HHI) [7] of a county, a measure of racial diversity (with higher values indicating
lower racial diversity), we applied the following formula:

HHI= (size of Race 1)2

size of total population
+ (size of Race 2)2

size of total population
+ � � �+ (size of Race 6)2

size of total population
;

where the six race categories we considered are (as in Section 2:1) White, Black, American
Indian and Alaska Native, Asian, Native Hawaiian and other Pacific Islander, and other
races. Finally, to calculate the political lead by the Democratic party over the Republican
party in a county, we subtracted the number of Republican votes in the county from number
of Democratic votes in the county and divided this difference by the total number of votes
in the county. We chose to use this difference instead of just the percent of votes for the
Democratic party or the percent of votes for the Republican party. This is because there
is a non-negligible amount of votes for other parties and taking the difference allows us to
focus on the political inclination towards the two major parties.

2.3 Variable selection

Among the six candidate explanatory covariates (including total population, median house-
hold income, percent unemployed, percent with Bachelor's or higher, HHI and political
lead), we found some to be highly correlated with others (Figure 2). More specifically,

2. �size� means �number of people�.
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Covariate VIF before variable selection VIF after variable selection
Total population 4.89 1.90

Median household income 3.76 1.70
% unemployed 2.19 1.34

% with Bachelor's or higher 4.56 NA (removed)
HHI 7.88 NA (removed)

Political lead 2.61 1.23

Table 1. Variance-inflation factors (VIFs) before and after variable selection.

(a) Rate of charging stations (b) Total population (c) Median household income

(d) Percent unemployed (e) Political lead (f) Rate against political lead

Figure 3. (a) Choropleth of the rate or charging stations. (b-e) Choropleths of the four selected
explanatory covariates. (f) An exploratory scatter plot of the rate of charging stations against
political lead.

we found HHI to be highly negatively correlated with both total population and percent
unemployed, and percent Bachelor's or higher to be highly positively correlated with both
political lead and median household income. We also found high variance-inflation factors
(see the first column of Table 1). Variance-inflation factors measure multicollinearity, i.e.,
how well each explanatory covariate can be predicted by a linear regression over other
explanatory covariates; a value of one indicates no multicollinearity and higher values indi-
cate stronger multicollinearity. Since we will be using linear combinations of explanatory
covariates in the statistical models (Section 3), multicollinearity is particularly problem-
atic because it decreases the statistical discernibility of model coefficients. To combat
multicollinearity, we removed HHI and percent Bachelor's or higher, which noticeably
reduced the variance-inflation factors for the four remaining covariates (see the second
column of Table 1). The choropleths of the rate of charging stations and these four selected
explanatory covariates are shown in Figure 3a-e. Figure 3f shows a scatter plot of the rate
of charging stations against political lead; we see that these two covariates appear to be
mildly positively correlated.
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3 Methods

In this section, we discuss methods for modeling areal data as well as point-level data.

3.1 Areal data

3.1.1 Linear regression: an introductory model for areal data

We are interested in explaining variations in the county-level rate3 of charging stations
using three county-level covariates: median household income, political lead and percent
unemployed. This data qualifies as areal data because both the response and the explana-
tory variables are aggregated quantities over each areal unit (e.g., each county) in a spatial
window (e.g., New England). An introductory model for areal data is the linear regression
model:

Y =X�+ " with "i �
i:i:d:N (0; �); (1)

where Yi is the response variable of areal unit i, the i-th row of X (Xi;:) contains the
explanatory variables of areal unit i, � is the vector of coefficients, and � is the standard
deviation of residuals "i. In the context of our areal dataset, X in Equation 1 would have 4
columns representing the three explanatory variables plus a dummy variable of one and 65
rows representing the 65 counties in New England (excluding two islands); y in Equation
1 would also have 65 rows containing the rates of charging stations of 65 counties. As a
result, � and " would be column vectors with 4 and 65 rows respectively.

Importantly, the linear regression model assumes that the residuals are independently and
identically distributed. However, this assumption might be violated when variations in the
response variable are not fully captured by the selected explanatory variables. Therefore,
after fitting the linear regression model, we conduct hypothesis tests on whether its resid-
uals exhibit spatial association with the help of two test statistics, Moran's I and Geary's C,
which we discuss in Section 3.1.3. If the tests indicate spatial association of the residuals,
we must fit spatial regression models that capture such spatial association; these models
are discussed at length in Section 3.1.4.

3.1.2 Neighborhood matrices

The neighborhood matrix, which we denote by W , is a fundamental concept underlying
Moran's I, Geary's C, and the spatial regression models. Let n denote the number of areal
units. W is a n�n matrix with all diagonal entries being zero and all off-diagonal entries
falling between 0 and 1. Intuitively, Wi;j quantifies the extent to which areal units i and
j are considered as neighbors.

W can be defined in many styles. For example, in the spatial-adjacency style, we set
Wi;j=1 if the areal units i and j share a boundary andWi;j=0 otherwise; in the k-nearest-
neighbor style, we setWi;j=1 if and only if the areal unit j is among the k closest neighbors
of areal unit i by centroid distance. Finally, to create the row-standardized version of a
neighborhood matrix, we simply divide all entries in each row by the sum of all entries in
that row.

3. We also considered using the log-transformed rate as the response variable in Section 4 (Results) and found that
doing so gave more reasonable residuals.
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3.1.3 Testing for spatial association of residuals with Moran's I and Geary's
C

As we mentioned in Section 3.1.1, after fitting a linear regression model, we need to perform
tests on whether there's spatial association among areal units in terms of their residuals.
To do this, we set up the null hypothesis as �there is no spatial association in the residuals�
and the alternative hypothesis as �there is spatial association in the residuals�. However,
we need test statistics to quantify the degree of spatial association.

One such statistic, theMoran's I statistic [12], is defined as I=
¡
n/
P

i

P
j
Wi;j

�¡P
i

P
j
Wi;j("i¡

"�)("j ¡ "�)
�
/(
P

i
("i¡ "�)2), where we choose W to be the row-standardized spatial-adjacency

neighborhood matrix, and "� is the mean of all residuals. I usually falls in [¡1; 1]; it is
positive when there's positive spatial association, negative when there's negative spatial
association, and zero when there's no spatial association. To conduct the aforementioned
test using Moran's I, we perform the following procedure known as permutation testing:
we first simulate 50000 I values under the null hypothesis by randomly permuting the n
residuals to n areal units 50000 times and computing an I value each time; we then calculate
the p value as the percent of simulated I's that are greater4 than the observed I. Finally,
if p< 0.05, we say that Moran's I is statistically discernible from zero and reject the null
that there's no (positive) spatial association; otherwise, we do not reject the null.

Another statistic, the Geary's C statistic [5], is defined as C =
¡
(n¡ 1)

P
i

P
j
Wi;j("i¡ "j)

2
�
/¡

2
¡P

i

P
j
wi;j

�P
i
("i¡ "�)2

�
, where W is again the row-standardized spatial-adjacency neigh-

borhood matrix. By definition, C � 0. C = 1 when there's no spatial association, C < 1
when there's positive association, and C >1 when there's negative spatial association. To
conduct the aforementioned test using Geary's C, we follow the same procedure for Moran's
I discussed above, except that the p value is now computed as the percent of simulated
C's that are less than the observed C.

3.1.4 Spatial regression models

If we reject the null hypothesis of no spatial association among the linear regression resid-
uals, then we must fit other models that take into account such spatial association. In
this work, we focus on four alternatives: the spatial lag model, the spatial Durbin model,
the spatial error model, and the CAR model. We will use the Akaike Information criteria
(AIC) [1] to compare them (smaller AIC is better). For a model with fitted parameters �,
its AIC is defined as

AIC=2j� j¡ 2 lnL(�)

where j� j is the number of parameters in the model and L is the model's likelihood function.
We see that the AIC is smaller when the fitted model is a better fit (as measured by L) but
also penalizes (i.e. by becoming larger) the number of parameters to discourage overfitting.
In the remainder of this section, let n again denote the number of areal units and d denote
the number of covariates.

The spatial lag model (page 305 of [2]) is defined as

Y =X�+ �WY + " with "i �
i:i:d:N (0; �);

4. In practice, we only look for evidence of positive association because it is the most common problem.
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where �2R,W is some neighborhood matrix, and X and Y are the same X and Y defined
in Section 3.1.1. Here, the response Yi of areal unit i depends not only on its covariates Xi;:

but also on the weighted sum (or weighted average if W is row-standardized) of response
over its neighboring areal units (also called the �lagged� response):

Yi=Xi;:�+ �Wi;:Y + "i=Xi;:�+ �

 X
j=1

n

Wi;jYj

!
+ "i: (Wi;: denotes the i-th row of W )

The spatial Durbin model (page 305 of [2]) is defined as

Y =X�+ �WY +WX
+ " with "i �
i:i:d:N (0; �);

where 
 is a d-by-1 matrix. This model extends the spatial lag model. Here, the response
Yi of areal unit i depends not only on its covariates Xi;: and the weighted sum of response
over its neighboring areal units but also on the weighted sums of covariates over neighboring
areal units (also called the �lagged� covariates):

Yi = Xi;:�+ �

 X
j=1

n

Wi;jYj

!
+
X
k=1

d


k(Wi;:X:;k)+"i=Xi;:�+ �

 X
j=1

n

Wi;jYj

!
+
X
k=1

d


k

 X
j=1

n

Wi;jXj;k

!
+"i;

where
P

jWi;jXj ;k is the weighted sum of the k-th covariate over the neighbors of areal
unit i.

The spatial error model (page 305 of [2]) is defined as

Y =X�+�W (Y ¡X�)+ " with "i �
i:i:d:N (0; �);

where �2R. This is similar to the spatial lag model except that Y ¡X� are used in place
of Y .

The conditional autoregressive (CAR) model (page 298 of [2]) is defined as

YijYj�i�N (X�+�W (Y ¡X�); : : : ) with eij ej�i�N
 X
j�i

ci;j ejP
j�i ci;j

;
�ei
2P

j�i ci;j

!
;

where Yj�i and "j�i denote the Y and " of the neighbors of areal unit i; ci;j's are estimated
from data. Both the spatial error model and the CAR model have the same mean for Yi,
but they specify the covariance structure of errors or residuals differently: in the CAR
model, the covariance structure is setup so that Yi depends on residuals of only the first-
order neighbors of i; this property is known as memorylessness.

3.2 Point-level data

3.2.1 Motivation for modeling point-level data

While modeling data on the areal level is straightforward, it has some notable disad-
vantages. First, aggregating the number of charging stations across counties ignores the
distribution of charging stations within counties. Doing so may also lead to the modifiable
areal unit problem, where changing the unit of aggregation also changes the conclusions of
parameter inference. To avoid these problems, we consider methods for directly modeling
charging stations on a point level.
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3.2.2 Homogeneous Poisson process

In a homogeneous Poisson process (HPP) (page 183 of [2]), we assume that points (e.g.,
charging stations) are generated within a spatial window W (e.g., New England) via the
probabilistic model:

m � Pois(�� jW j)
s1; : : : ; sm �

i:i:d
Unif(W );

where � is the intensity5, jW j denotes the area of W and Unif(W ) denotes a uniform
distribution over W . Given a dataset of m points, one can show that �̂=m/ jW j is an
unbiased estimator of �.

Since points in a dataset generated by an HPP are independently and uniformly distributed
acrossW , we say that this dataset exhibits �complete spatial randomness� (CSR). Datasets
that do not exhibit CSR need to be modeled by more sophisticated models that capture the
spatial variation of the intensity (i.e., no longer as a constant � but rather as a spatially-
varying function �(s) for s2W ); we discuss one introductory model of this kind in Section
3.2.4. Two common exploratory tools used to evaluate a point-level dataset's deviation from
CSR are the G function and the F function; we discuss these in detail in Section 3.2.3. If
these tools show that the locations of charging stations exhibit CSR, then there's no need
to proceed with more sophisticated models.

3.2.3 Testing for complete spatial randomness with G and F functions

One tool for diagnosing CSR is theG function (page 179 of [2]). For an HPP with parameter
�, the probability that the Euclidean distance between a point generated by the HPP and
its nearest-neighbor point generated by the HPP is below r can be shown to be

G(r)=1¡ exp(¡��r2); (2)

which is known as the theoretical G function. For a dataset of m observed points, the
empirical G function is defined as the empirical cumulative distribution function of m
distances, one for each observed point, where each distance is the Euclidean distance
between an observed point and its nearest-neighbor observed point. To test for CSR, we
plot the empirical G function of the dataset of interest together with (i) the theoretical G
function under CSR (Equation 2 with �=m/jW j) and (ii) the simulation envelope whose
upper and lower bounds capture all empirical G functions of datasets (each with m points)
sampled under CSR (i.e., independently and uniformly acrossW ). We used a software that
accomplishes these steps while also accounting for edge correction.

The interpretation of such a plot is straightforward. If the empirical G function of the
observed point-level dataset lies above the simulation envelope, then observed points and
their nearest-neighbor observed points are closer together than expected under CSR, indi-
cating spatial clustering. If this observed G function lies below the simulation envelope,
then observed points and their nearest-neighbor observed points are farther away than
expected under CSR, indicating spatial repulsion. Finally, if this observed G function lies
within the simulation envelope, then we say that the observed dataset exhibits CSR.

5. Here � can be interpreted as the average number of points per unit area inW . More formally, the intensity at a
location s2W , �(s), is defined as the limit of n(A)/jAj as jAj! 0, where A is a circle centered at s, jAj is the area
of A and n(A) is the number of points in A. For an HPP, since �(s) is constant, these two definitions are equivalent.
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Another tool for diagnosing CSR is the F function (page 181 of [2]). For an HPP with
parameter �, the probability that the Euclidean distance between an arbitrary point in W
and its nearest-neighbor point generated by the HPP is below r can be shown to be

F (r)= 1¡ exp(¡��r2); (3)

which is known as the theoretical F function. The empirical F function is defined simi-
larly to the empirical G function except that each distance is now the Euclidean distance
between an arbitrary point in W 6 and its nearest-neighbor observed point. To test for
CSR, we also create a plot of the empirical F function of the dataset of interest together
with (i) the theoretical F function under CSR (Equation 3 with �=m/ jW j) and (ii) the
simulation envelope whose upper and lower bounds capture all empirical F functions of
datasets (each with m points) sampled under CSR.

If the empirical F function of the observed point-level dataset lies above the simula-
tion envelope, then arbitrary points and their nearest-neighbor observed points are closer
together than expected under CSR, indicating less empty spaces and hence spatial repul-
sion among observed points. If this observed F function lies below the simulation envelope,
then arbitrary points and their nearest-neighbor observed points are farther away than
expected under CSR, indicating more empty spaces and hence spatial clustering among
observed points. Finally, if this observed F function lies within the simulation envelope,
then we say that the observed dataset exhibits CSR.

3.2.4 Non-homogeneous Poisson process: an introductory model for point-level
data

If the observed point-level dataset does not exhibit CSR, we need another model that cap-
tures its spatially-varying intensity pattern. Here, we consider an introductory model, the
non-homogeneous Poisson process (NHPP) (page 184 of [2]). In the NHPP, the intensity
function is defined as

�(s)= exp(X(s)T�); (4)

where X(s) the column vector of explanatory covariates at point s2W and � is again the
column vector of coefficients. Here,X(s) has five rows corresponding to the three covariates
used in Section 3.1.1 and 3.1.4, total population (previously, in Section 3.1.1 and 3.1.4, total
population was taken into account by using the rate of charging stations as the response),
and a dummy variable of one.

This version of the intensity function seeks to explain all variations in intensity using
only a linear combination of explanatory covariates and, since we only have access to the
explanatory covariates on the county level (as discussed in Section 2), is constant within
counties. In Section 5, we discuss these limitations at length and mention another point-
level model that doesn't have these limitations. Nevertheless, the NHPP is a good starting
point for modeling point-level datasets and can be easily extended to more complex point-
level models.

Similar to the HPP, the NHPP model assumes the following probabilistic model: first, the
number of points m is sampled from a Poisson distribution with rate parameter �(W ) =R
W
�(s) ds; then, m points are independently and identically sampled according to the

intensity function, which is like a unnormalized probability distribution over W . One can

6. In practice, a grid of arbitrary points is created within W .
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Figure 4. Linear regression residuals when the rate of charging stations is used as the response
variable (left) and when the log rate of charging stations is used as the response variable (right).

Response Political lead included? Moran's I Geary's C
log rate Yes 0.071 (p= 0.1471) 0.905 (p= 0.1529)
log rate No 0.265 (p=8� 10¡4) 0.717 (p= 0.00112)
rate Yes 0.019 (p= 0.3185) 0.950 (p= 0.2913)
rate No 0.263 (p= 0.0018) 0.711 (p= 0.00192)

Table 2. Moran's I and Geary's C on linear regression residuals and their p values.

obtain an estimate of � by (approximately) maximizing this model's log-likelihood function
with respect to �; the log-likelihood function can be found on page 188 of [2]. In practice,
we rely on a software that implements this procedure.

4 Results

4.1 Areal data

4.1.1 Linear regression

We fitted the linear regression model with median household income (normalized to [0;1]),
political lead and percent unemployed as the three explanatory variables and log rate of
charging stations as the response variable. All variables are at the county level. The log
transformation of the rate of charging stations was motivated by the observation that the
residuals look more normally distributed after the transformation (Figure 4).

Moran's I and Geary's C of the residuals of this model and their respective p values
associated with permutation tests are shown in the 1st row of Table 2. Since the p values
are greater than 0.05, we fail to reject the null that there's no spatial association among
the residuals. Interestingly, as shown by the 2nd row of Table 2, when political lead is
removed from the model, the residuals exhibit spatial association, indicating that the
spatial variability in political lead explains a lot of the spatial variability in the log rate of
charging stations. It is also worth noting that these results are robust to whether we use
log rate or rate as the response variable (see 3rd and 4th row of Table 2).
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Coefficient Corresponding covariate Value 95% CI p-value
�0 1 -7.200 (-7.960, -6.439) <2� 10¡16

�1 median household income (normalized) -1.924 (-2.943, -0.905) 0.000364
�2 political lead 2.193 (1.389, 2.997) 9.51� 10¡7

�3 percent unemployed -4.732 (-27.042, 17.578) 0.672973

Table 3. Coefficients of linear regression, their 95% confidence intervals and their p values.

Spatial adjacency 3-nearest-neighbor 7-nearest-neighbor 12-nearest-neighbor

Figure 5. The four row-standardized neighborhood matrices used in spatial regression. White
represents the value one and black represents the value zero. As expected, as the number of nearest
neighbors increases, the matrix becomes less sparse and the entries become darker, indicating
smaller values.

Since the residuals of the linear regression model using log rate and all three covariates do
not exhibit spatial association, the modeling assumption of the linear regression model is
satisfied and we now interpret its coefficients. Table 3 shows the fitted coefficients, their
95% confidence intervals and their p values. Since only the coefficients associated with
median household income and political lead are statistically discernible from zero, we only
interpret these two coefficients. The model predicts that, while holding other covariates
constant, each percent (i.e., 1% or 0.01) increase in political lead leads to a 2.193� 0.01=
0.02193 increase in the mean log rate, which corresponds to scaling the median of the
rate by a factor of e0.02193� 1.0222. Intuitively, this means that counties with a bigger
lead by Democratic votes over Republican votes tend to have more charging stations
per person. Intuitively, this result makes sense because Democrats are more willingness
to adopt electric vehicles [18] and a 2015-2016 survey of vehicle owners across US shows
that electric vehicles were most popular among Democrats [4]. This result also aligns
with a finding in [9]: states with the Republican candidate winning most votes for both
the 2016 and 2020 elections tend to have fewer charging stations. On the other hand,
median household income is negatively associated with the number of charging stations per
person. This is counterintuitive because we'd expect communities that are more financially
well-off to have more purchasing power for electric vehicles and better access to charging
infrastructure; indeed, multiple prior work showed the opposite effect [8, 9, 10].

4.1.2 Spatial regression

Since the residuals of the linear regression model do not exhibit spatial association, we do
not need to perform spatial regression. Nevertheless, we demonstrate its workflow in case
the residuals of linear regression exhibit spatial association when applied to a different
dataset. Table 4 shows the AIC scores of all combinations of the four spatial regression
models discussed in Section 3.1.4 and four neighborhood matrices (Figure 5). These scores
fall in a narrow range from 96.742 to 104.4, indicating that all models have similar quality.
Among these 16 models, the best model is the spatial Durbin model with the 3-nearest-
neighbor neighborhood matrix.
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Neighborhood Matrix \ Model Spatial Lag Spatial Durbin Spatial Error CAR
Spatial adjacency (row-standardized) 96.936 98.772 99.845 100.93
3-nearest neighbors (row-standardized) 98.159 96.742 99.307 100.5
7-nearest neighbors (row-standardized) 98.65 102.27 100.3 101.06
12-nearest neighbors (row-standardized) 101.04 104.4 100.08 101.05

Table 4. The AIC scores for all combinations of four spatial regression models and four neighbor-
hood matrices. The best AIC score per column is emphasized in bold. The best AIC score overall
is underlined.

Coefficient Corresponding covariate Value 95% CI p-value
�0 1 -5.458 (¡7.627;¡3.290) 8.089� 10¡7

�1 median household income (normalized) -1.189 (¡2.572; 0.194) 0.09192
�2 political lead 2.180 (1.431; 2.929) 1.183� 10¡8

�3 percent unemployed -6.945 (¡34.078; 20.188) 0.61592

1 �lagged� median household income (normalized) -1.653 (¡3.513; 0.208) 0.08172

2 �lagged� political lead 0.028 (¡1.312; 1.368) 0.96747

3 �lagged� percent unemployed 31.875 (¡2.335; 66.085) 0.06783
� �lagged� log rate 0.226 (¡0.059; 0.511) 0.16359

Table 5. Coefficients of the best spatial Durbin model, their 95% confidence intervals and their
p values.

Table 3 emits several interesting observations. First, AIC scores of CAR models are all
above 100, while the other three spatial regression models all have two or more scores below
100. This indicates that spatial memory is important for modeling the log rates, and only
utilizing spatial information of first-order neighbors is sub-optimal. Second, for the spatial
lag, spatial Durbin and spatial error models, AIC score tends be higher when the number
of neighbors is large. This implies that, for a county, spatial variables from further-away
counties tend to be less relevant for predicting its log rate, and averaging over them when
creating �lagged� covariates tend to do more harm than good.

Finally, we provide interpretations for the best spatial Durbin model. For a sanity check,
we confirm that the residuals of this best model do not exhibit spatial association (Moran's
I=0.05 with p=0.21; Geary's C=0.91 with p=0.16). Table 5 shows its fitted coefficients
and their p values.

From Table 5, we see that only the intercept and the coefficient for political lead are
statistically discernible from zero. The value of coefficient for political lead (2.180) in this
spatial Durbin model is similar to that in the linear regression model (2.193), indicating
some level of agreement between the two models. While holding other covariates constant,
this spatial Durbin model predicts that each percent (i.e., 1% or 0.01) increase in political
lead leads to a 2.18� 0.01= 0.0218 increase in the mean log rate, which corresponds to
scaling median of the rate by a factor of e0.0218�1.0220. The implications of this are similar
to what we described earlier for linear regression.

All other coefficients are not statistically discernible from zero. This includes �, the coeffi-
cient of the weighted average of log rate over three nearest counties, and 
1, the coefficient
of the weighted average of the median household income over three nearest counties. This
suggests that spatial information from neighboring counties are not important predictors
of log rate, which makes sense since linear regression residuals did not exhibit spatial
association. Nevertheless, including these �lagged� covariates yields a slightly better AIC
(96.742) than linear regression (99.078).
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(a) G function of charging stations (black line) (b) F function of charging stations (black line)
against G functions of datasets generated against F functions of datasets generated

under CSR (gray band) under CSR (gray band)

Figure 6. Exploratory plots for diagnosing CSR.

4.2 Point-level data

4.2.1 Testing for complete spatial randomness

Before modeling, we test whether locations of charging stations exhibit CSR using G and F
functions discussed in Section 3.2.3. Figure 6a shows the (empirical) G function of charging
stations against G functions of datasets generated under CSR. We see that, for a large
range of r values, the observed G function lies above the simulation envelope. This means
that, for each radii in this range, the proportion of charging stations with their nearest-
neighbor charging stations in this radii is higher than expected under CSR. In other words,
charging stations and their nearest-neighbor charging stations are closer than expected
under CSR, indicating clustering of charging stations.

We also compared the F function of charging stations against F functions of datasets
generated under CSR in Figure 4b. We see that, for almost all r values, the observed F
function lies below the simulation envelope. This means that, for each radii, the proportion
of arbitrary locations with their nearest-neighbor charging stations within this radii is lower
than expected under CSR. In other words, arbitrary locations and their nearest-neighbor
charging stations are farther away than expected under CSR, indicating more empty spaces
and hence clustering of charging stations.

4.2.2 Non-homogeneous Poisson process

The fact that locations of charging stations do not exhibit CSR motivates us to move
beyond the HPP and perform further modeling with the NHPPmodel. We fitted the NHPP
model with total population (normalized to [0; 1]), median household income (normalized
to [0; 1] as in linear and spatial regression), political lead and percent unemployed as the
four explanatory covariates. Recall that all these covariates are only available at the county
level. This means that X(s) in Equation 4 is a 5-dimensional vector (with one dummy
dimension being one and the other four dimensions being the values of the four explanatory
covariates) and is constant within each county.

Coefficient Corresponding covariate Value 95% CI p-value
�0 1 0.238 (¡0.029; 0.506) �0.05
�1 median household income (normalized) 1.818 (1.513; 2.124) <0.001
�2 political lead 4.774 (4.582; 4.966) <0.001
�3 percent unemployed 102.883 (97.133; 108.633) <0.001
�4 total population (normalized) 1.716 (1.560; 1.871) <0.001

Table 6. Coefficients of NHPP, their 95% confidence intervals and their p values.
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(a) Intensity surface from quadrat counts (b) Intensity surface from fitted NHPP

(35-by-35 grid)

Figure 7. Comparison between the intensity surface obtained from quadrat counts (by dividing
the number of charging stations in each quadrat by its area) and the intensity surface obtained
from the fitted NHPP.

We provide the fitted values, confidence intervals and p values of the coefficients in Table 6.
Interestingly, the coefficients of all covariates are statistically discernible from zero (in the
positive direction) while the coefficient of the intercept is not. Median household income,
political lead, percent unemployed and total population at the county level all have positive
effects on the spatial intensity of charging stations in New England. Intuitively, this means
that counties with higher median household income, a bigger lead by Democratic votes
over Republican votes, a higher percent unemployed and more people tend to have more
charging stations. The positive effect from political lead aligns with the result of linear
regression and [9]. The positive effect from median household income makes sense intu-
itively because we'd expect wealthier communities to have more electric vehicles and better
access to charging infrastructure, and also aligns with prior work [8, 9, 10]. The positive
effect from total population seems logical since we'd expect counties with more residents
to have more electric vehicles which rely on a larger network of charging stations. Finally,
the positive effect from percent unemployed is the least intuitive among all explanatory
covariates.

To qualitatively evaluate the reliability of these coefficient estimates, we compare the
intensity surface obtained from the fitted NHPP (Figure 7b) against the intensity surface
obtained from quadrat counts (Figure 7a). We see that both intensity surfaces look similar
and the fitted NHPP successfully captures the region of high intensity. However, this
high-intensity region is an outlier compared to the rest of New England and therefore may
heavily influence the coefficient estimates.

5 Discussion

This project was motivated by the research question: what is the relationship between
political inclination and the frequency of electric-vehicle charging stations in the New
England region of the United States? To approach this question, we performed areal
analysis, which models the county-level log rate of charging stations as a linear function of
county-level covariates (which includes the covariate political lead as a measure of political
inclination), and point-level analysis, which models the log intensity of charging stations as
a linear function of county-level covariates. To answer the research question, we interpreted
the coefficients associated with the covariates in the fitted models.

15



The final model from areal analysis, the linear regression model, and the final model
from point-level analysis, the NHPP, gave similar results for the relationship between
political inclination and the frequency of charging stations. Both of these models showed
that counties with a bigger lead by Democratic votes over Republican votes tend to have
more charging stations after accounting for other covariates. This means the relationship
between political inclination and the frequency of charging stations on the state level
discovered by [9] also holds on the county level and point level, at least in New England.
However, the two models yielded conflicting results for the discernability and direction
of effect of other covariates: percent unemployed is discernible in the NHPP but is not in
linear regression; median household income is discernible in the positive direction in linear
regression but is discernible in the negative direction in the NHPP.

The linear regression model and the spatial regression models agreed on the discernability
and direction of effect of the three covariates. This was expected because the linear regres-
sion residuals didn't display spatial association, meaning that spatial regression models
are technically not required for our areal dataset despite giving slightly better AIC than
the linear regression model. Nevertheless, we decided to describe, fit and interpret spatial
regression models and we note that the areal-level analysis described in this paper can gen-
eralize to other areal datasets for which linear regression residuals are spatially correlated.

The linear regression model and the NHPP each has its own limitations. As discussed in
Section 3.2.1, while the linear regression model and other areal models are simple to fit
and interpret, they ignore the distribution of charging stations within counties and could
potentially suffer from the modifiable areal unit problem, where the unit of aggregation
influences the conclusions of inference. Models for point-level data, on the other hand,
bypass these problems by directly modeling locations of charging stations on a point level.
However, as briefly mentioned in Section 3.2.4, the NHPP we considered is a very intro-
ductory and limited point-level model because it assumes the intensity function to be fully
determined by the explanatory covariates. As a result, its intensity function is constant on
the county level because our covariates are only available on the county level. Additionally,
as discussed in Section 4.2.2, while it successfully captured the county with unusually high
intensity and produced a reasonable intensity surface overall, its coefficient estimates could
be heavily influenced by that unusual county; for this reason, the coefficient estimates of the
linear regression model appear to be more reliable than those of the NHPP in the context
of this project.

One possibility for future work is to use the log-Gaussian Cox process [11], which adds a
smooth-varying Gaussian process to the intensity function of the NHPP, for overcoming the
aforementioned limitations of the NHPP. The added Gaussian process allows the intensity
to vary within areal units even when covariates are constant within areal units and also
takes into account intensity patterns not captured by the covariates themselves. Another
direction of future work could be performing the same analysis conducted in this project
for other regions in the United States; comparing coefficient estimates across different
regions could lead to valuable insights on how political inclination affects the frequency of
charging stations differently in different regions.
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